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Thinner parts �the so-called holes� and thicker parts �islands� move in free-standing smectic films due to
gravity if the film is inclined. The velocity of the movement depends on the viscosity coefficient �3 of the film.
Therefore, this measurement is a direct method to determine �3 in smectic phases. This paper contains the
corresponding hydrodynamic calculations for the flow patterns in and around a circular hole in a circular
two-dimensional film under various conditions. The viscous force on the hole is calculated. Experiments are
performed with the liquid crystal n-octyl-cyano-biphenyl �8CB� in the smectic phase. The influence of the
disclination which surrounds the hole and the influence of the gas which surrounds the film on the movement
is studied. It is shown that the influence of these effects on the determination of �3 can be neglected if the film
is thick and the difference in the thicknesses between film and hole is small. The temperature dependence of �3

is determined for 8CB.
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I. INTRODUCTION

The viscous behavior of nematic liquid crystals has been
studied in numerous papers �1–3�. The viscosity
coefficients—especially the rotational viscosity coefficient
�1—are used to calculate the switching times of liquid crys-
tal displays. The number of papers which are concerned with
the measurement in smectic phases is very small. For some
smectic phases—i.e., in SC phases �4�—the viscous behavior
is very complicated. For all smectic phases it is difficult to
align the director and to avoid the generation of disclinations
during the experiment. Use of free-standing smectic films
avoids this problem.

Free-standing films have the unique property of perfect
alignment of the director and constant thickness over large
areas. It is very simple to draw films with thicknesses be-
tween two and several thousand molecular lengths with areas
of some cm2. Furthermore, it is possible to generate circular
areas with a smaller or larger thickness in a film. Areas with
a smaller thickness �holes� can be generated by a heating
technique developed by Géminard et al. �5�. If the film is
inclined, the holes and islands begin to move �6� and the
viscosity coefficient �3 can be determined from the gravita-
tional force on the hole or island and the viscous drag.

II. EXPERIMENT

A. Experimental methods

Films were drawn with a wiper across a 14-mm aperture
in a film holder made from aluminum �see Fig. 1�. The wiper
is moved by means of a motor-driven micrometer screw. For
thick films up to 30 �m the wiper velocity is 0.01 mm/s.
Thin films are drawn with velocities up to 8 mm/s. The mea-
surements are performed under hydrogen or nitrogen �both
99.999%�.

The holes are generated with a heating element �Gémi-
nard et al. �5�� which consists of a 30-�m stainless steal
wire. The upper part of the wire is covered with a 30-�m
silver film in order to release the heat at the sharp kink which
is mounted some 10 �m above the film. The pulse generator

is a regulated power supply and a 1-F capacity which is
loaded up to 1–15 V and is connected for 0.1–1 ms with the
heating element.

The film and film holder are surrounded by a thermostat-
ted housing with a temperature stability of ±0.01 K. Two
inclined glass windows allow the observation of the film
from above and below. Additional glass windows are used to
maintain a constant temperature at the film and to avoid flow
of the gas in the housing. Light traps and apertures avoid

FIG. 1. Schematic diagram of the setup. The thermostatted
housing for the film, windows in the housing, light traps, and
motor-driven micrometer screw for the wiper movement are not
shown.
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stray light in the upper and lower optical paths.
Visual observation of the film during drawing is per-

formed with a macroscope �microscope with a small magni-
fication and a large working distance, Leica, M420�. Coaxial
illumination with a usual microscope illuminator is accom-
plished by means of a beam splitter made from a 0.15-mm
glass plate. As the image contrast from the disclination at the
border of the hole is small a simple dark-field illumination is
used which consists of a plate at the condenser of the mac-
roscope illumination and an aperture in the macroscope. The
movement of the holes is recorded by means of a camera
�QImaging, MicroPublisher, cooled version� with up to two
frames per second.

The thickness of the films is measured by means of inter-
ference spectra which are measured in reflection. The light
source is a halogen lamp �Osram, Xenophot, 100 W�. The
filament is imaged on the film by means of an achromat. An
aperture of 4 mm gives a maximum deviation from normal
incidence of 1°. The conversion filter �Linos, TL60� reduces
the light intensity at the wavelength of the maximum signal
of the imaging spectrograph and transmits the light at short
and long wavelengths.

The spectra are recorded with an imaging spectrograph
�Jobin Yvon, f =140 mm, 375–800 nm, 1024 pixels�. After
calibration with 30 spectral lines between 378 nm �Tl� and
795 nm �Rb� the precision of the wavelength determination
of the interference spectra is better than 0.1 nm. A 16-bit
intensity resolution and averaging of the recordings
�20 – 100 times� resulted in spectra with high signal-to-noise
ratios.

The whole setup could be rotated around a horizontal axis
in order to incline the film. Usual inclination angles are
3° –7°.

The measurements were performed with the liquid crystal
n-octyl-cyano-biphenyl �8CB�, which exhibits an SA phase
between 21.0 and 33.0 °C. The purity of 8CB �Synthon
GmbH, Wolfen, Germany� was 99%.

Very thick films show a bending due to gravity. In the
horizontal position the bending z is �see Appendix B; Rf: film
radius�

z =
A

4
�r2 − Rf

2� with A =
�dgd

2�
. �1�

It amounts to −50 �m at the film center with respect to the
film holder, and the deviation from the horizontal plane
amounts to 0.8° at the film holder for a film with a thickness
d=25 �m, a diameter of 14 mm, a density �d=1 g/cm3

�8CB�, and a surface tension �=30 mN/m �8CB �7��. Due to
this bending, the vertical position of the heater has to be
adjusted corresponding to the thickness of the film. The
bending does not change the inclination of the film in the
film center and has not to be taken into account in the evalu-
ation of the gravitational force on the hole.

B. Evaluation of measurements

The evaluation of the interference spectra is described in
an earlier paper �8�. A measurement before the flow experi-
ment gives the thickness df of the outer part of the film. A

second measurement after the hole has spread over the whole
film gives the thickness dh of the hole. The resolution of the
thickness measurement is some 0.1 nm so that the depth of
holes with a depth of 30 nm can be determined with suffi-
cient resolution.

The holes were generated with the film in the horizontal
position about 1 mm “below” the film center. Then the film
was inclined and the movement was observed. Only those
hole positions are used for the following evaluation for
which the distance to the film center is smaller than 0.5 mm
in order to fulfill the condition of concentricity which is as-
sumed in the hydrodynamical calculations. Figure 2 shows a
hole with a thickness difference of 1 �m which gives a high
contrast. For usual measurements the contrast is so low that
it would not be visible with the contrast and the resolution of
the printed image.

The determination of the hole positions was performed
with a program in a half automatic way. Finally a linear
regression for usually ten positions gave the velocity of the
hole.

The gravitational force on the hole is

Fg = �Rh
2�dg	d sin 
 , �2�

where Rh is the hole radius, �d the density of the liquid
crystal, 	d=df −dh the depth of the hole, and 
 the film
inclination. Together with the hydrodynamical force �see Eq.
�A14�� we find

Rh
2�dg	d sin 
 =

− 4�dfV

ln �h +
1 + 2W − 4W�h

2 − �1 − 2W��h
4

2�1 + W + �1 − W��h
4�

,

�3�

which is the final equation for the evaluation of the viscosity.
Some of the quantities are explained in Appendix A. In Eq.
�3� and the following text the viscosity coefficient �3 is des-
ignated with the abbreviation �. �3 describes the viscosity
for a flow with a director alignment perpendicular to the flow
velocity and to the velocity gradient �9�.

FIG. 2. Film with hole. The film holder �diameter 14 mm� is
visible in the corners of the image. The variation of the intensity of
the light reflected from the film is due to imperfections of the dark-
field illumination and dust particles on the windows.
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C. Experimental results

The hole changes slightly its form during a motion over
distances comparable with the film radius �see Fig. 3�. If the
hole starts near the film border, an elliptic distortion results
with the long axis in the flow direction. This distortion is
caused by the necessary flow of the liquid behind the hole. In
the neighborhood of the center the hole is always circular
due to the line tension of the disclination. If the hole ap-
proaches the film border, it is also elliptically distorted but
with the long axis perpendicular to the flow direction. As
only measurements with the hole near the film center were
used for the further evaluation no problems resulted from the
distortions of the holes near the film border.

During the movement of the hole hydrodynamic pressures
act on it and can also lead to deviations from the circular
form. Large holes are more easily deformed than small holes.
This is first a consequence of the stronger hydrodynamic
pressures on large holes due to their larger velocities. Sec-
ond, a deviation of the bending of the disclination leads to a
stronger deformation for a large hole than for a small hole.
Under the usual experimental conditions—film inclination of
some degrees and hole radii of 0.5–1 mm—this effect does
not lead to noticeable deviations from the circular form of
the holes.

Holes are growing if their radius is larger than the critical
radius �5�. Due to the bending of the meniscus, the pressure
in the film is smaller than the pressure in the surrounding
gas. This leads to a force on the disclination which points to
the outer side. Figure 4 shows the growing of a hole during
the movement for a small inclination of the film—i.e., a slow
movement. The increase of the hole radius leads to an accel-
erated movement and must be taken into account in the
evaluation. The relative increase of the radius is small for the
measurements used for the evaluation �distance to the film
center smaller than 0.5 mm�. Furthermore, in Eq. �3� the
mean square of the hole radius Rh is used as Rh on the left
side of Eq. �3�, which contains the main dependence on Rh.

Figure 5 shows the apparent viscosity of 8CB at 22.0 °C

under hydrogen and nitrogen as a function of the film thick-
ness d. The apparent viscosity is calculated with Eq. �3� us-
ing the measured thickness ratio W. There is a structure in
the scatter plot which is due to the sequence of measure-
ments during one day. At the beginning a film with a certain
thickness is drawn. Every hole reduces the film thickness
somewhat and gives the film thickness for the next measure-
ment.

There is a tendency to higher apparent viscosities with
decreasing film thickness because the flow in the film leads
to a flow and a dissipation of energy in the surrounding gas.
The effect on the apparent viscosity of the film is reduced
with increasing film thickness. The effect is more pro-
nounced in nitrogen which exhibits a higher viscosity
�17.5 �Pa s� than hydrogen �8.8 �Pa s, both at 20 °C�.

The variation of the apparent viscosity at constant film
thickness is due to the dissipation of energy in the disclina-
tion which surrounds the hole. This effect is discussed in the
next paragraphs.

FIG. 3. Schematic drawing of the deformations of a moving
hole at different positions in the film.

FIG. 4. Growing and movement of a hole in a film with a di-
ameter of 14 mm. Each point �center of the hole� corresponds to a
measurement. Not all perimeters are shown.

FIG. 5. Apparent viscosity �app of 8CB versus thickness d of
the film at 22.0 °C under hydrogen �•� and nitrogen ���.
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Figure 6 shows the same measurements as a function of
the relative hole depth:

	dr = 	d/df = �df − dh�/df . �4�

In the derivation of Eq. �3� it was assumed that there is no
energy dissipation in the disclination surrounding the hole.
This leads to a flow in the hole �see Fig. 12 in Appendix A�.
The other extreme case is a strong dissipation because the
line tension is high. The hole behaves like a solid plate �see
Fig. 10, below�. The drags for these cases �“fluid hole” and
“solid hole”� are different and their ratio is shown in Fig. 13,
below.

The influence of the dissipation in the disclination on the
apparent viscosity can be estimated as follows. The line ten-
sion of a disclination in thick films is proportional to 	d
�10�. Therefore, the energy dissipation in the disclination of a
moving hole is also proportional to 	d if all other quantities
are held constant. The hydrodynamic energy dissipation in
the film is proportional to df. Therefore, the apparent viscos-
ity should depend on 	dr and the exact value should be
found for 	dr→0. Unfortunately, the dependence is not lin-
ear because very large 	dr values only lead to the case of the
solid hole. The saturation of this dependence can be seen in
Fig. 6. A simple ansatz for this dependence is

�app = ��1 + ��s

�
− 1� 	dr

A + 	dr
� , �5�

where A is an unknown parameter and �s is the apparent
viscosity for a solid hole if the determination of the viscosity
is performed with the fluid hole equation �A16�. �s /� corre-
sponds to the inverse drag ratio of Eq. �A17�. Equation �5�
describes correctly the two limiting cases �app=� for 	dr
→0 and �app=�s for 	dr�A.

The second correction to be done is the influence of the
gas. Here the ansatz

�app = � + B/df �6�

was used. This ansatz takes into account that the dissipation
in the film is proportional to the film thickness df. B is an
unknown parameter.

The unknown parameters A and B in Eqs. �5� and �6� are
determined by a least-squares fit from the experimental data.
Figure 7 shows the success of this correction. The result is
not perfect due to the simplicity of the equations and other
effects which are not taken into account. One of those effects
is the influence of the meniscus which is well visible in the
upper left corner of Fig. 2. The width of the meniscus
changes around the perimeter of the film �compare, e.g., the
width of the menisci in the upper left and lower right corners
of Fig. 2� and changes from one experiment to the other. It is
to be assumed that there is no flow in the meniscus and that
the effective film radius is smaller than the hole in the film
holder.

As the correction for deep holes and thin films is not
perfect it is better to avoid large corrections and to use only
measurements on very thick films �df �10 �m� and on holes
with small depths �	dr�0.04� �see Fig. 7�. In this case the
simpler ansatz for the correction

� = �app − C	d/df − B/df �7�

can be used.
Figure 8 shows the viscosity of 8CB as a function of

temperature in the smectic phase and from 22 to 16 °C in the
undercooled smectic phase. The thickness of the film was
about 21 �m, and the hole depth varied from 0.014 to
0.04 �m. No correction due to the finite thickness and the
nonzero hole depth was performed. The deviations from the
solid line which is a fit with �0exp�Ea /RT� show the acces-
sible precision of the method of measurement.

FIG. 6. Apparent viscosity �app of 8CB versus relative depth
	dr of the hole under hydrogen �•� and nitrogen ���.

FIG. 7. Apparent viscosity �app of 8CB after correction for mea-
surements under hydrogen. ��� Measurements in the range df

�10 � and 	dr�0.04, ��� measurements out of this range.
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The values in the smectic phase are a continuation of the
nematic values with a small offset. The nematic-smectic
phase transition of 8CB is discussed to be continuous or to
exhibit a very small transition enthalpy �12�. Therefore, it is
to be assumed that the viscosity coefficient �3 shows no
sharp discontinuity at the transition. Small changes are ex-
pected due to small changes in the density.

Comparison with other measurements in smectic liquid
crystals is difficult as there are only a few viscosity studies.
Kim et al. �13� and Sohl et al. �14� have studied cyanoben-
zylidene octyloxyaniline �CBOOA� which is unstable and
the melting point �84 °C� is rather high. They found out that
the viscosity behaves nearly continuous at the nematic-
smectic transition. The missing temperature dependence in
the measurement of Sohl et al. is surely an experimental
artifact. Bhattacharya and Letcher �15� and Krestov et al.
�16� have studied two reentrant nematic mixtures of cyano-
biphenyls and cyanoterphenyls with results similar to this
paper. Thus, there is no direct comparison with other mea-
surements on 8CB which is the standard smectic liquid crys-
tal today.

III. SUMMARY

Measurement of the velocity of moving holes in inclined
free-standing smectic films allows the determination of the
viscosity coefficient �3. The hydrodynamics of the hole
movement and errors of the determination is discussed. Mea-
surements are performed with the room-temperature smectic
liquid crystal 8CB. The temperature dependence of �3 is
determined and compared with the dependence in the nem-
atic phase.

A disadvantage of the method is the limitation to the mea-
surement of �3.
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APPENDIX A: HYDRODYNAMICAL CALCULATIONS

In this appendix the flow pattern for the movement of a
thinner part �a so-called hole� in a smectic film is calculated.
The calculation is performed under the following assump-
tions.

�i� Two-dimensional laminar flow of an incompressible
fluid.

�ii� Circular film and hole.
�iii� Concentric position of the hole.
�iv� No-slip condition at the outer boundary of the film.
�v� No energy dissipation in the disclination which sur-

rounds the hole.
�vi� No influence of the gas above and below the film.
Under these conditions introduction of the stream func-

tion  simplifies the calculation. The velocity components vx
and vy are related to the stream function by

�

�y
= vx,

�

�x
= − vy , �A1�

and the stream function must satisfy the two-dimensional
biharmonic equation �17�

�4 = 0. �A2�

The general solution of the biharmonic equation in polar
coordinates for a movement in the tilt direction y is �17� �see
Fig. 9�

 = cos ��Ar + Br−1 + Cr3 + Dr ln r� . �A3�

FIG. 8. Viscosity � of 8CB versus temperature. �•� Measure-
ments in the smectic phase �this work�, ��� �3 measurements in the
nematic phase of 8CB from Kneppe et al. �11�. FIG. 9. Definition of quantities used in the hydrodynamical cal-

culations. �=r /Rf is the dimensionless radius.
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The velocity components are obtained as

vr = − sin ��A + Br−2 + Cr2 + D ln r� , �A4�

v� = − cos ��A − Br−2 + 3Cr2 + D�1 + ln r�� . �A5�

The constants A–D have to be determined from the boundary
conditions.

It is not known a priori whether there is a flow within the
hole. A flow within the hole leads to changes in the length of
the disclination line. One extreme case �“fluid hole”� would
be observed if the energy dissipation due to the changes in
the disclination line can be neglected compared with the dis-
sipation in the remaining part of the film. The other extreme
case �“solid hole”� would be observed if the energy dissipa-
tion in the disclination would be large and would prevent the
flow within the hole. The solution for the solid hole has been
reported by Slezkin �18� �see also �17��.

A general solution takes into account a fluid hole with a
film thickness that is different from that in the outer part of
the film. Because the different film thicknesses df and dh
cannot be used in a two-dimensional model, the viscosity in
the hole is changed according to �h=� fdh /df. Two different
sets of constants Af–Df and Ah–Dh have now to be deter-
mined for the outer and inner flow. Correspondingly, eight
boundary conditions have to be fulfilled.

Conditions at Rf:

� = 0 ° : Af − BfRf
−2 + 3CfRf

2 + Df�1 + ln Rf� = 0,

� = 90 ° : Af + BfRf
−2 + CfRf

2 + Df ln Rf = 0.

Conditions at Rh:

� = 90 ° : − �Af + BfRh
−2 + CfRh

2 + Df ln Rh� = V ,

� = 90 ° : − �Ah + BhRh
−2 + ChRh

2 + Dh ln Rh� = V ,

Af − BfRh
−2 + 3CfRh

2 + Df�1 + ln Rh�

= Ah − BhRh
−2 + 3ChRh

2 + Dh�1 + ln Rh� ,

� f�BfRh
−3 + CfRh� = �h�BhRh

−3 + ChRh� .

Conditions at r=0:

Bh = 0,

Dh = 0.

The last boundary condition at Rh is due to the assumption of
equal forces on both sides of the disclination.

The equations have been solved with Mathematica:

Af = V	1 + �h
4�W − 1� + W − 2�h

2W

+ 2�− 1 + �h
4�W − 1� − W�ln Rf
/Z , �A6�

Bf = − V
Rf

2�h
2��h

2�W − 1� − W�
Z

, �A7�

FIG. 10. Flow pattern around a moving solid hole. FIG. 11. Flow pattern for a moving fluid hole. The film thick-
nesses inside and outside are assumed to be equal.

FIG. 12. Flow pattern for a fixed fluid hole in a film with a
moving film holder.
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Cf = V
− 1 + ��h

2 − 1�W
Rf

2Z
, �A8�

Df = 2V
1 − �h

4�W − 1� + W

Z
, �A9�

Ah = 2V	�− 1 + �h
2���h

2�W − 1� − W�

+ �1 − �h
4�W − 1� + W�ln Rf
/Z , �A10�

Ch = V
��h

2 − 1�2

Rf
2�h

2Z
, �A11�

with

W = �h/� f = dh/df , �A12�

Z = − 1 + �h
4�1 − 2W� − 2W + 4�h

2W

+ 2�− 1 + �h
4�W − 1� − W�ln �h. �A13�

For W→� the equations transform into the equations of
Slezkin �18�.

Figures 10 and 11 show the flow patterns for a solid hole
�W→ � � and a fluid hole with W=1. The flow in the fluid
hole is better visible in a flow pattern with a fixed hole in a
moving film holder �Fig. 12�.

Integration of the forces on the hole gives the drag on the
hole:

F = − 4�Df�df =
4��dfV

ln �h +
1 + 2W − 4W�h

2 − �1 − 2W��h
4

2�1 + W + �1 − W��h
4�

.

�A14�

The second part of this equation is obtained with Df from Eq.
�A9�. For W→� �solid hole� the drag becomes

Fsolid =
4��dfV

ln �h + �1 − �h
2�/�1 + �h

2�
�A15�

and for W=1 �fluid hole�

Ffluid =
4��dfV

ln �h + ���h
2 − 2�2 − 1�/4

. �A16�

The drags on the solid and fluid hole show different de-
pendences on the hole radius. The ratio FR is obtained as

FR =
Ffluid

Fsolid
=

ln �h + �1 − �h
2�/�1 + �h

2�
ln �h + ���h

2 − 2�2 − 1�/4
�A17�

and is shown in Fig. 13. Because FR depends on the hole
radius, the determination of � with Eq. �3� for different hole
radii using W→� and the correct value, respectively, should
allow us to differentiate between the solid and fluid hole.

APPENDIX B: BENDING OF A FILM UNDER THE
INFLUENCE OF GRAVITY

In this appendix the bending of a horizontal circular
smectic film with constant thickness d and density �d under
the influence of gravity is calculated. The energy of the sys-
tem consists of the potential energy of the mass and the
surface energy of the film:

E = 2��dgd�
0

Rf

r�1 + z�2zdr + 4���
0

Rf

r�1 + z�2dr .

�B1�

� is the surface tension. Some manipulations give

E

4��
= �

0

Rf

r�1 + Az��1 + z�2dr, A =
�dgd

2�
. �B2�

The Euler-Lagrange equation of this variational problem is

FIG. 13. Drag ratio for the fluid and solid hole as a function of
the relative hole radius �h. FIG. 14. Bending of a film �A=0.04 cm−1� with a film radius

which is approximately half of the maximum accessible value. The
dashed line shows the parabolic approximation �B5�. Both curves
are shifted with their minima to the same value 0.
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z� = �1 + z�2��−
z�

r
+

A

1 + Az
� . �B3�

The transformation u=Ar ,v=Az leads to

v� = �1 + v�2��−
v�

u
+

1

1 + v
� . �B4�

We could not find an analytical solution of this equation.
Numerical experiments showed that a solution is only pos-
sible for Rf �1.09/A. Figure 14 shows a numerical solution
of Eq. �B3� for A=0.04 cm−1 �d=25 �m, density �d

=1 g/cm3, and surface tension �=30 mN/m �8CB �7���.
For Rf �1.09/A the parabola

z = a�r2 − Rf
2� with a =

1 − �1 − A2Rf
2

2ARf
2 �B5�

is a good approximation for the solution of the differential
equation. For even smaller Rf values the approximation

a = A/4 �B6�

can be used.
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